Количество диагоналей выпуклого многоугольника больше 2015, какое наименьшее количество вершин может быть у этого многоугольника?С решением. Ответ должен быть или А.63 , или Б. 64 , или В. 65, или Г. 66. Заранее спасибо.
Число диагоналей у выпуклого N угольника равно N(N-3)/2. Т.о., решаем неравенство: N(N-3)/2>2015 N(N-3)>4030 N²-3N-4030>0 D² = 3²+4030*4 = 16129 = 127² N₁ = (3+127)/2 = 130/2 = 65 N₂ = (3-127)/2 < 0 - не может быть числом вершин Значит, при 65 вершинах число диагоналей равно 65*62/2=65*31=2015. Но по условию диагоналей больше, поэтому число вершин должно быть больше 65. Наименьшее такое число - 66.