Скоротити дріб А в квадраті - 12А + 36 дріб 2А в квадраті - 11А - 6

0 голосов
68 просмотров

Скоротити дріб А в квадраті - 12А + 36 дріб 2А в квадраті - 11А - 6


Математика (20 баллов) | 68 просмотров
Дано ответов: 2
0 голосов
Правильный ответ
\frac{a ^{2}-12a+36 }{2a ^{2}-11a-6 }= \frac{(a-6) ^{2} }{2*(a-6)*(a+0.5)}= \frac{a-6}{2*(a+0.5)}
2a ^{2}-11a-6=0
D=b ^{2}-4ac=(-11) ^{2}-4*2*(-6)=121+48=169
a _{1}= \frac{-b+ \sqrt{D} }{2a}= \frac{11+13}{4}=6
a _{2}= \frac{-b- \sqrt{D} }{2a}= \frac{11-13}{4}=- \frac{2}{4}=- \frac{1}{2}=-0.5
по формуле: a*(a- a_{1})*(a- a_{2})=2*(a-6)*(a+0.5)
(это я нашла корни, чтобы разложить на множители знаменатель)
(8.1k баллов)
0 голосов
\frac{a^{2}-12a+36}{2a^{2}-11a-6}=числитель свернем по формуле квадрат разности, а знаменатель по формуле a(x-x_{1})(x-x_{2}), где а=первый член квадратного многочлена, а х_1 и х_2 это корни данного квадратного уравнения , полученного при решение нашего многочлена приравненного к нолю
и получим следующее решение
\frac{a^{2}-12a+36}{2a^{2}-11a-6}= \frac{(a-6)^{2}}{2(a-6)(a+\frac{1}{2})}=\frac{(a-6)^{2}}{(a-6)(2a+1)}=\frac{a-6}{2a+1}
(6.2k баллов)