Фигура ЕМРК - сечение треугольной пирамиды АDСВ плоскостью, проходящей через середины ребер этой пирамиды. Значит эта фигура лежит в одной плоскости и ее стороны попарно параллельны. Это - параллелограмм. Но МК=РЕ. Если в параллелограмме диагонали равны, то этот параллелограмм - прямоугольник.
ЕК - средняя линия треугольника АDС, параллельна АС и равна ее половине. ЕК=6см.Тогда из прямоугольного треугольника ЕРК по Пифагору находим катет РК:
РК=√(ЕР²-ЕК²)= √(100-36)=8см.
РК - средняя линия треугольника DBС, параллельна DB и равна ее половине. Значит BD=16см.
Ответ: DВ=16см.