Первый наберет весь текст за x часов, второй за y. Производительность первого 1/x, второго 1/y. Вся работа 1. Работая вместе наберут за 10 ч, т.е. (1/x+1/y)*10=1.
Набирали вместе 6 часов, потом второй набирал ещё 12 часов (1/x+1/y)*6+1/y*12=1
Составим и решим систему уравнений:
![\begin{cases} (\frac1x+\frac1y)\cdot10=1\\ (\frac1x+\frac1y)\cdot6+\frac{12}y=1 \end{cases}\\ \frac1x+\frac1y=\frac1{10}\\ \frac1x=\frac1{10}-\frac1y\\ \begin{cases} \frac1x=\frac1{10}-\frac1y\\ (\frac1{10}-\frac1y+\frac1y)\cdot6+\frac{12}y=1 \end{cases}\\ (\frac1{10}-\frac1y+\frac1y)\cdot6+\frac{12}y=1\\ \frac6{10}+\frac{12}y=1\\ \frac{12}y=\frac4{10}\\ \frac1y=\frac4{10\cdot12}=\frac1{30}\\ \begin{cases} \frac1x=\frac1{15}\\ \frac1y=\frac1{30} \end{cases}\Rightarrow\begin{cases} x=15\\ y=30 \end{cases} \begin{cases} (\frac1x+\frac1y)\cdot10=1\\ (\frac1x+\frac1y)\cdot6+\frac{12}y=1 \end{cases}\\ \frac1x+\frac1y=\frac1{10}\\ \frac1x=\frac1{10}-\frac1y\\ \begin{cases} \frac1x=\frac1{10}-\frac1y\\ (\frac1{10}-\frac1y+\frac1y)\cdot6+\frac{12}y=1 \end{cases}\\ (\frac1{10}-\frac1y+\frac1y)\cdot6+\frac{12}y=1\\ \frac6{10}+\frac{12}y=1\\ \frac{12}y=\frac4{10}\\ \frac1y=\frac4{10\cdot12}=\frac1{30}\\ \begin{cases} \frac1x=\frac1{15}\\ \frac1y=\frac1{30} \end{cases}\Rightarrow\begin{cases} x=15\\ y=30 \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D+%28%5Cfrac1x%2B%5Cfrac1y%29%5Ccdot10%3D1%5C%5C+%28%5Cfrac1x%2B%5Cfrac1y%29%5Ccdot6%2B%5Cfrac%7B12%7Dy%3D1+%5Cend%7Bcases%7D%5C%5C+%5Cfrac1x%2B%5Cfrac1y%3D%5Cfrac1%7B10%7D%5C%5C+%5Cfrac1x%3D%5Cfrac1%7B10%7D-%5Cfrac1y%5C%5C+%5Cbegin%7Bcases%7D+%5Cfrac1x%3D%5Cfrac1%7B10%7D-%5Cfrac1y%5C%5C+%28%5Cfrac1%7B10%7D-%5Cfrac1y%2B%5Cfrac1y%29%5Ccdot6%2B%5Cfrac%7B12%7Dy%3D1+%5Cend%7Bcases%7D%5C%5C+%28%5Cfrac1%7B10%7D-%5Cfrac1y%2B%5Cfrac1y%29%5Ccdot6%2B%5Cfrac%7B12%7Dy%3D1%5C%5C+%5Cfrac6%7B10%7D%2B%5Cfrac%7B12%7Dy%3D1%5C%5C+%5Cfrac%7B12%7Dy%3D%5Cfrac4%7B10%7D%5C%5C+%5Cfrac1y%3D%5Cfrac4%7B10%5Ccdot12%7D%3D%5Cfrac1%7B30%7D%5C%5C+%5Cbegin%7Bcases%7D+%5Cfrac1x%3D%5Cfrac1%7B15%7D%5C%5C+%5Cfrac1y%3D%5Cfrac1%7B30%7D+%5Cend%7Bcases%7D%5CRightarrow%5Cbegin%7Bcases%7D+x%3D15%5C%5C+y%3D30+%5Cend%7Bcases%7D)
Первый наберёт весь текст за 15 часов, второй за 30 ч.