Пожалуйста, объясните как делать. :) Шифр кодового замка представляет собой...

0 голосов
143 просмотров

Пожалуйста, объясните как делать. :) Шифр кодового замка представляет собой последовательность из пяти символов, каждый из которых является цифрой от 1 до 4. Сколько различных вариантов шифра можно задать, если известно, что цифра 1 может встречаться ровно два раза, а каждая из других допустимых цифр может встречаться в шифре любое количество раз или не встречаться совсем?


Информатика (95 баллов) | 143 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

270 - это ответ, чтобы добраться до него, нужно
1. Рассмотреть варианты когда в шифре две единицы, а остальные любые цифры. По условию у нас длинна шифра 5, и используем символы 1,2,3,4. Теперь выделяем из длинны 5 два места под единицы, остается длинна 3, в которую нужно поместить все сообщения состоящие из 3 цифр (2,3,4 - т.к. единицу уже использовали) По формуле Q  = M в степени K, где Q - сколько сообщений получится, M - количество используемых символов (у нас исп. 2,3,4, т.е. 3 символа), а K - длинна сообщений (мы ищем длину сообщений 3 буквы, т.к. 2 у нас уже заняты единицами) найдем М. М = 3 в степени 3, т.е. М = 27.Получаем, что в одном таком варианте 27 разных сообщений.
2.  Выше мы рассмотрели только один вариант, где 2 единицы стояли на двух первых местах, т.е 11ххх, где ххх - это цифры 2.3.4. Чтобы понять сколько таких вариантов существует, используем формулу сочетаний из n по k (в нашем случае из 5 по 2) она равна 5!/2!*(5-2)!=10. Получаем что есть 10 вариантов расстановки 2-х единиц в сообщении длинной 5, можно даже перебрать все 10 вариантов (1. 11ххх 2.1х1хх 3. 1хх1х 4. 1ххх1 5. х11хх 6. хх11х 7. ххх11 8. х1х1х 9. хх1х1 10. 1ххх1)

Подведем итог, 10 вариантов по 27 сообщений - итог 270 сообщений.

(242 баллов)
0

Спасибо большое