![(a)\quad f(x)=3x^2\sqrt[3]x-4x^3\sqrt[4]x+4x^{-\frac12}=3x^2x^{\frac13}-4x^3x^{\frac14}+4x^{-\frac12}=\\ =3x^{(2+\frac13)}-4x^{(3+\frac14)}+4x^{-\frac12}=3x^{\frac73}-4x^{\frac{13}4}+4x^{-\frac12}\\ f'(x)=\frac73\cdot3x^{(\frac73-1)}-\frac{13}4\cdot4x^{(\frac{13}4-1)}-\frac12\cdot4x^{(-\frac12-1)}=\\ =7x^{\frac43}-13x^{\frac94}-2x^{-\frac32}\\ (b)\quad s(t)=e^{2t}\sin t\\ s'(t)=\left(e^{2t}\right)'\cdot\sin t+e^{2t}\cdot(\sin t)'=2\cdot e^{2t}\sin t+e^{2t}\cos t (a)\quad f(x)=3x^2\sqrt[3]x-4x^3\sqrt[4]x+4x^{-\frac12}=3x^2x^{\frac13}-4x^3x^{\frac14}+4x^{-\frac12}=\\ =3x^{(2+\frac13)}-4x^{(3+\frac14)}+4x^{-\frac12}=3x^{\frac73}-4x^{\frac{13}4}+4x^{-\frac12}\\ f'(x)=\frac73\cdot3x^{(\frac73-1)}-\frac{13}4\cdot4x^{(\frac{13}4-1)}-\frac12\cdot4x^{(-\frac12-1)}=\\ =7x^{\frac43}-13x^{\frac94}-2x^{-\frac32}\\ (b)\quad s(t)=e^{2t}\sin t\\ s'(t)=\left(e^{2t}\right)'\cdot\sin t+e^{2t}\cdot(\sin t)'=2\cdot e^{2t}\sin t+e^{2t}\cos t](https://tex.z-dn.net/?f=%28a%29%5Cquad+f%28x%29%3D3x%5E2%5Csqrt%5B3%5Dx-4x%5E3%5Csqrt%5B4%5Dx%2B4x%5E%7B-%5Cfrac12%7D%3D3x%5E2x%5E%7B%5Cfrac13%7D-4x%5E3x%5E%7B%5Cfrac14%7D%2B4x%5E%7B-%5Cfrac12%7D%3D%5C%5C+%3D3x%5E%7B%282%2B%5Cfrac13%29%7D-4x%5E%7B%283%2B%5Cfrac14%29%7D%2B4x%5E%7B-%5Cfrac12%7D%3D3x%5E%7B%5Cfrac73%7D-4x%5E%7B%5Cfrac%7B13%7D4%7D%2B4x%5E%7B-%5Cfrac12%7D%5C%5C+f%27%28x%29%3D%5Cfrac73%5Ccdot3x%5E%7B%28%5Cfrac73-1%29%7D-%5Cfrac%7B13%7D4%5Ccdot4x%5E%7B%28%5Cfrac%7B13%7D4-1%29%7D-%5Cfrac12%5Ccdot4x%5E%7B%28-%5Cfrac12-1%29%7D%3D%5C%5C+%3D7x%5E%7B%5Cfrac43%7D-13x%5E%7B%5Cfrac94%7D-2x%5E%7B-%5Cfrac32%7D%5C%5C+%28b%29%5Cquad+s%28t%29%3De%5E%7B2t%7D%5Csin+t%5C%5C+s%27%28t%29%3D%5Cleft%28e%5E%7B2t%7D%5Cright%29%27%5Ccdot%5Csin+t%2Be%5E%7B2t%7D%5Ccdot%28%5Csin+t%29%27%3D2%5Ccdot+e%5E%7B2t%7D%5Csin+t%2Be%5E%7B2t%7D%5Ccos+t)
![(c)\quad g(x)=(1+\sqrt x)(1+\sqrt{2x})^{-1}=\frac{1+\sqrt x}{1+\sqrt{2x}}\\ g'(x)=\frac{(1+\sqrt x)'(1+\sqrt {2x})-(1+\sqrt x)(1+\sqrt {2x})'}{(1+\sqrt{2x})^2}=\frac{\frac{1+\sqrt{2x}}{\sqrt x}-\frac{2(1+\sqrt x)}{\sqrt{2x}}}{(1+\sqrt{2x})^2}=\\ =\frac{\frac{2+2\sqrt{2x}-2-2\sqrt x}{\sqrt{2x}}}{(1+\sqrt{2x})^2}=\frac{\sqrt x(\sqrt{2}-1)}{\sqrt2\sqrt x(1+\sqrt{2x})^2}=\frac{\sqrt{2}-1}{\sqrt2(1+\sqrt{2x})^2}=\\ =(2^{\frac12}-1)2^{-\frac12}(1+\sqrt{2x})^{-2}=(1-\sqrt2)(1+\sqrt{2x})^{-2} (c)\quad g(x)=(1+\sqrt x)(1+\sqrt{2x})^{-1}=\frac{1+\sqrt x}{1+\sqrt{2x}}\\ g'(x)=\frac{(1+\sqrt x)'(1+\sqrt {2x})-(1+\sqrt x)(1+\sqrt {2x})'}{(1+\sqrt{2x})^2}=\frac{\frac{1+\sqrt{2x}}{\sqrt x}-\frac{2(1+\sqrt x)}{\sqrt{2x}}}{(1+\sqrt{2x})^2}=\\ =\frac{\frac{2+2\sqrt{2x}-2-2\sqrt x}{\sqrt{2x}}}{(1+\sqrt{2x})^2}=\frac{\sqrt x(\sqrt{2}-1)}{\sqrt2\sqrt x(1+\sqrt{2x})^2}=\frac{\sqrt{2}-1}{\sqrt2(1+\sqrt{2x})^2}=\\ =(2^{\frac12}-1)2^{-\frac12}(1+\sqrt{2x})^{-2}=(1-\sqrt2)(1+\sqrt{2x})^{-2}](https://tex.z-dn.net/?f=%28c%29%5Cquad+g%28x%29%3D%281%2B%5Csqrt+x%29%281%2B%5Csqrt%7B2x%7D%29%5E%7B-1%7D%3D%5Cfrac%7B1%2B%5Csqrt+x%7D%7B1%2B%5Csqrt%7B2x%7D%7D%5C%5C+g%27%28x%29%3D%5Cfrac%7B%281%2B%5Csqrt+x%29%27%281%2B%5Csqrt+%7B2x%7D%29-%281%2B%5Csqrt+x%29%281%2B%5Csqrt+%7B2x%7D%29%27%7D%7B%281%2B%5Csqrt%7B2x%7D%29%5E2%7D%3D%5Cfrac%7B%5Cfrac%7B1%2B%5Csqrt%7B2x%7D%7D%7B%5Csqrt+x%7D-%5Cfrac%7B2%281%2B%5Csqrt+x%29%7D%7B%5Csqrt%7B2x%7D%7D%7D%7B%281%2B%5Csqrt%7B2x%7D%29%5E2%7D%3D%5C%5C+%3D%5Cfrac%7B%5Cfrac%7B2%2B2%5Csqrt%7B2x%7D-2-2%5Csqrt+x%7D%7B%5Csqrt%7B2x%7D%7D%7D%7B%281%2B%5Csqrt%7B2x%7D%29%5E2%7D%3D%5Cfrac%7B%5Csqrt+x%28%5Csqrt%7B2%7D-1%29%7D%7B%5Csqrt2%5Csqrt+x%281%2B%5Csqrt%7B2x%7D%29%5E2%7D%3D%5Cfrac%7B%5Csqrt%7B2%7D-1%7D%7B%5Csqrt2%281%2B%5Csqrt%7B2x%7D%29%5E2%7D%3D%5C%5C+%3D%282%5E%7B%5Cfrac12%7D-1%292%5E%7B-%5Cfrac12%7D%281%2B%5Csqrt%7B2x%7D%29%5E%7B-2%7D%3D%281-%5Csqrt2%29%281%2B%5Csqrt%7B2x%7D%29%5E%7B-2%7D)
![(d)\quad h(x)=x+\sqrt{4-x^2}\\ h'(x)=1-\frac{2x}{2\sqrt{4-x^2}}=1-\frac{1}{\sqrt{4-x^2}}=1-(4-x^2)^{-\frac12}\\ (e)\quad w(x)=x\sqrt{4-x^2}\\ w'(x)=\sqrt{4-x^2}-\frac{x\cdot2x}{2\sqrt{4-x^2}}=(4-x^2)^{\frac12}-x^2(4-x^2)^{-\frac12} (d)\quad h(x)=x+\sqrt{4-x^2}\\ h'(x)=1-\frac{2x}{2\sqrt{4-x^2}}=1-\frac{1}{\sqrt{4-x^2}}=1-(4-x^2)^{-\frac12}\\ (e)\quad w(x)=x\sqrt{4-x^2}\\ w'(x)=\sqrt{4-x^2}-\frac{x\cdot2x}{2\sqrt{4-x^2}}=(4-x^2)^{\frac12}-x^2(4-x^2)^{-\frac12}](https://tex.z-dn.net/?f=%28d%29%5Cquad+h%28x%29%3Dx%2B%5Csqrt%7B4-x%5E2%7D%5C%5C+h%27%28x%29%3D1-%5Cfrac%7B2x%7D%7B2%5Csqrt%7B4-x%5E2%7D%7D%3D1-%5Cfrac%7B1%7D%7B%5Csqrt%7B4-x%5E2%7D%7D%3D1-%284-x%5E2%29%5E%7B-%5Cfrac12%7D%5C%5C+%28e%29%5Cquad+w%28x%29%3Dx%5Csqrt%7B4-x%5E2%7D%5C%5C+w%27%28x%29%3D%5Csqrt%7B4-x%5E2%7D-%5Cfrac%7Bx%5Ccdot2x%7D%7B2%5Csqrt%7B4-x%5E2%7D%7D%3D%284-x%5E2%29%5E%7B%5Cfrac12%7D-x%5E2%284-x%5E2%29%5E%7B-%5Cfrac12%7D)
0\\ x\in(-2,0)\Rightarrow f'(x)<0\\ x\in(0,2)\Rightarrow f'(x)<0\\ x\in(2,+\infty)\Rightarrow f'(x)>0" alt="2(a)\quad f(x)=x^4-8x^2\\ f'(x)=4x^3-16x\\ 4x^3-16x=0\\ 4x(x^2-4)=0\\ 4x=0\Rightarrow x=0\\ x^2-4=0\Rightarrow x=\pm2\\ x\in(-\infty,-2)\Rightarrow f'(x)>0\\ x\in(-2,0)\Rightarrow f'(x)<0\\ x\in(0,2)\Rightarrow f'(x)<0\\ x\in(2,+\infty)\Rightarrow f'(x)>0" align="absmiddle" class="latex-formula">
В точке x=-2 производная меняет знак с + на -, значит в этой точке экстр.максимум.
В точке x=2 производная меняет знак с - на +, значит в этой точке экстр.минимум.
Функция монотонно возрастает на интервале, если её производная на этом интервале >0, убывает - если <0.</p>
f(x) монотонно возрастает на
и монотонно убывает на (-2,2).
0" alt="(b)\quad g(x)=3x^4-4x^3+1\\ g'(x)=12x^3-12x^2\\ 12x^3-12x^2=0\\ 12x^2(x-1)=0\\ 12x^2=0\Rightarrow x=0\\ x-1=0\Rightarrow x=1\\ x\in(-\infty,0)\Rightarrow g'(x)<0\\ x\in(0,1)\Rightarrow g'(x)<0\\ x\in(1,+\infty)\Rightarrow g'(x)>0" align="absmiddle" class="latex-formula">
В точке x=1 производная меняет знак с - на +, значит в этой точке экстр.минимум.
g(x) монотонно возрастает на
, монотонно возрастает на ![(1,+\infty) (1,+\infty)](https://tex.z-dn.net/?f=%281%2C%2B%5Cinfty%29)
0" alt="(c)\quad h(x)=x^3-7x^2+15x-9\\ h'(x)=3x^2-14x+15\\ 3x^2-14x+15=0\\ D=196-4\cdot3\cdot15=16=4^2\\ x_1=6,\quad x_2=3\frac13\\ x\in(-\infty,3\frac13)\Rightarrow h'(x)<0\\ x\in(3\frac13,6)\Rightarrow h'(x)<0\\ x\in(6,+\infty)\Rightarrow h'(x)>0" align="absmiddle" class="latex-formula">
В точке x=6 производная меняет знак с - на +, значит в этой точке экстр.минимум.
h(x) монотонно убывает на
, монотонно возрастает на ![(6,+\infty) (6,+\infty)](https://tex.z-dn.net/?f=%286%2C%2B%5Cinfty%29)