Доказать что на множестве ВСЕХ действительных чисел функция
1)y=-3x+1 убывает ; 2) y(x)=x^3 возрастает .
1) y = - 3x+1 убывает;
-------------------
у↓
y₂ -y₁ = - 3(x₂) +1 - ( -3(x₁) +1) = -3(x₂ - x₁) .
y₂ -y₁ = -3(x₂ - x₁) из этого равенства следует, если x₂ - x₁ > 0 то y₂ -y₁< 0 или по другому x₂ > x₁⇒ y₂ < y₁ (а это определение убывающей функции) .
* * * для старшеклассников * * *
у ' =(-3x+1) ' = -3 < 0 ⇒функция убывающая .<br>----------------
2) y(x)=x³ возрастает
-------------------
у↑ - ?
y(x₂) -y(x₁) =x₂³ -x₁³ =(x₂ - x₁)(x₂² + x₂x₁ +x₁²) =(x₂ - x₁)((x₂²+x₁/2²)+3x₁²/4) .
y(x₂) -y(x₁) = (x₂ - x₁)((x₂²+x₁/2²)+3x₁²/4) из этого равенства следует, если x₂ - x₁ > 0 то y₂ -y₁> 0 или по другому x₂ > x₁⇒ y₂> y₁ (а это определение возрастающей функции) .
* * * для старшеклассников с помощью производной * * *