Через точку (3, 5) ** прямой p: y = x+2 провели прямую q, перпендикулярную прямой p....

0 голосов
35 просмотров

Через точку (3, 5) на прямой p: y = x+2 провели прямую q, перпендикулярную прямой p. Найдите площадь выпуклого четырёхугольника, ограниченного прямыми p, q и осями координат.


Геометрия (45 баллов) | 35 просмотров
0

Перезарузи страницу если не видно

Дан 1 ответ
0 голосов
Правильный ответ

  Так как оно перпендикулярна ,  то если прямая      q имеет вид  y=kx+b\\
 k*1=-1\\
 k=-1 \\
 5=-3+b \\
 b=8 \\
 q: y=-x+8 \\\\
 
Найдем точки пересечения с осями , и вычислим как  площади двух прямоугольных треугольников , разбив четырехугольник на два прямоугольных 
O_{1}(0;2) \\
 O_{2}(10;0) \\
 O_{3}(3;5) \\
 O_{4}(0;0)\\ 
 S_{O_{1}O_{2}O_{3}O_{4}} = \frac{10*2}{2} + \frac{\sqrt{( 10-3)^2+5^2} * \sqrt{(3-0)^2+(5-2)^2}}{2} = \frac{20+3\sqrt{37}}{2}
 

(224k баллов)