Положим что это верно , то есть делить , точки касания , тогда и вторая диагональ делить из-за того что трапеция равнобедренная .
Продлим за точки , тогда и замечательного свойства трапеций , того что отрезок соединяющий диагонали и основания , проведенный из вершины проходит через одну точку , но так как трапеция равнобедренная , получим что прямая проведенная с вершины треугольника , будет делить на , но так как , то и и точки пересечения диагоналей и будут пересекаться в одной точке ,а значит изначальное условие было верно .
Так как трапеция , равнобедренная , диагонали делят на треугольники , два из которых подобны , если большее основание и меньшее равны тогда высоты треугольников образованных отрезками диагоналей и основаниями . Получим
То есть основания относятся как