Log3log8log2 (x-5) = log3(2) -1
log3log8log2 (x-5) = log3(2) - log3(3)
log3log8log2 (x-5) = log3(2/3)
log8log2 (x-5) = 2/3
log8log2 (x-5) = log8 (8^(2/3))
log8log2 (x-5) = log8(4)
log2 (x-5) = 4
log2 (x-5) = log2(2^4)
log2 (x-5) = log2(16)
x-5 =16
x=21
Проверка
log3log8log2 (21-5) = log3log8log2(16) = log3log8(4) = log3(2/3) = log3(2)-1
Ответ:21