Помогите!В ∆АВС точки А1, В1 и С1 делят стороны ВС, АС и АВ соответственно в отношениях:...

0 голосов
132 просмотров

Помогите!


В ∆АВС точки А1, В1 и С1 делят стороны ВС, АС и АВ соответственно в отношениях: ВА1:А1С=3:7; АВ1:В1С=1:3; АС1:С1В=1. Найдите отношение площадей ∆АВС и ∆А1В1С1.


Геометрия (48 баллов) | 132 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Чтобы найти отношение площадей, надо, как минимум, найти эти площади.  Из того, что нам дано (стороны треугольников), наиболее подходящей формулой для определения площадей будет: S=(1/2)*a*b*Sinα, так как для треугольников АВС, А1В1С, С1ВА1 и АС1В1 имеем значения двух сторон  и угла между ними (он у них общий).
Тогда Sabc=(1/2)*AB*AC*sinA, a Sac1b1=(1/2)*(1/2)AB*(1/4)AC*sinA.
То есть Sac1b1=(1/8)*Sabc.
Sabc=(1/2)*AB*BC*sinB, a Sc1ba1=(1/2)*(1/2)AB*(3/10)BC*sinB.
То есть Sc1ba1=(3/20)*Sabc.
Sabc=(1/2)*AC*BC*sinC, a Sb1a1c=(1/2)*(3/4)AC*(7/10)BC*sinC.
То есть Sb1a1c=(21/40)*Sabc.
Заметим, что Sa1b1c1 равна разности Sabc - (Sac1b1+ Sc1ba1+Sb1a1c). 
Или Sabc-((1/8)+(3/20)+(21/40))*Sabc=Sabc-(4/5)*Sabc = (1/5)*Sabc.
То есть отношение площадей ∆АВС и ∆А1В1С1 равно 5:1.


image
(117k баллов)