cos2x=cosx
2cos^2x-1-cosx=0
пусть cosx=t? -1<=t<=1</p>
2t^2-t-1=0
D=1+8=9, d=3
t=-1/2
t=1
cosx=-1/2 cosx=1
x=+-pi/3+2pi*n, n принадлежит z x=2pi*n, n принадлежит z
1. -2pi<=pi/3+2pi*n<=-pi (умножаем на 3)</p>
-6pi<=pi+6pi*n<=-3pi (переносим pi)</p>
-5pi<=6pi*n<=-4pi (делим на 6pi)</p>
-5/6<=n<=-4/6</p>
корней нет
2. -2pi<=-pi/3+2pi*n<=-pi (умножаем на 3)</p>
-6pi<=-pi+6pi*n<=-3pi (переносим pi)</p>
-5pi<=6pi*n<=-2pi (делим на 6pi)</p>
-5/6<=n<=-2/6</p>
корней нет
3. -2pi<=2pi*n<=-pi (делим на 2pi)</p>
-1<=n<=-1/2</p>
n=-1, корень: -2pi
n=0, корень 0