ABCD – трапеция, АВ = DС, BC = 8 см
ВМ – высота
АМ = 3х, MD = 5х
CN – высота
MN = BC = 8 см (как противолежащие стороны прямоугольника MBCN)
Δ ABM = Δ DCN (по гипотенузе (AB = DC) и катету (BM = CN как высоты) )
значит, AM = DN = 3x
MD – ND = MN
5x – 3x = 8
2x = 8
x = 8 : 2
x = 4 (см)
AD = AM + MD = 3x + 5x = 8x = 8*4 = 32 см
K ∈ AB, P ∈ CD, KP – средняя линия
KP = (BC + AD) : 2
KP = (8 + 32) : 2 = 40 : 2 = 20 см
Ответ: AD = 32 см, КР = 20 см
Пишите, если что не так