Дано прямоугольник ABCD ; AB < AD: AC = 26; AB : AC = 5 : 13
⇒ AB : 26 = 5 : 13 ⇒ AB = 10
AD = √(IACI² - IABI²) = √(13² - 10²) = √69
S = AB·AD = 10·√69
_________________________________________________________________-
Дано ромб ABCD; AB = BC = CD = DA ; AC⊥BD ; O тачка пересечения
диагональ ; AC > BD
AC + BD = 14 ⇒ BD = 14 - AC
AC + AB = 13 ⇒ AB = 13 - AC
AB² = AO² + OB² ⇒
(13 - AC)² = (AC/2)² + [(14 - AC)/2]² обозн. AC=x
4· (169 - 26x + x²) = x² + x² - 28x + 196
x² - 38x+240 = 0 ⇒ x = 11 ⇒
AC = 11; BD = 3; AB = 2
S(Трапеции) = 1/2·AC·BD = 1/2·11·3 = 16,5
_________________________________________________________
Дано параллелограмм ABCD BE высота
AB= 3 ; AD = 5 ; ∡ ABE = 60°
⇒ BE = AB·Cos60°= 3·1/2 = 1,5
S = AD·BE = 5·1,5 = 7,5
S = 7,5