Найдите 2015-й член последовательности 1,2,1,2,3,2,1,2,3,4,3,2,1,2,3,4,5,4,3,2,1,...

0 голосов
41 просмотров

Найдите 2015-й член последовательности 1,2,1,2,3,2,1,2,3,4,3,2,1,2,3,4,5,4,3,2,1,...


Алгебра (14 баллов) | 41 просмотров
Дан 1 ответ
0 голосов

Если обозначить a_n - номер места, на котором стоит n-ая единица, то a_{n+1}=a_n+2n, где a_1=1. Отсюда нетрудно посчитать по сумме арифметической прогрессии, что a_n=n^2-n+1.
Элемент последовательности с номером a_n+k равен k+1, при 0\le k\le n и равен 2n-k+1, при n< k<2n. Поэтому,
т.к. a_{45}=1981 и a_{46}=2071, (т.е. 2015-ый элемент находится между 45-ой и 46-ой единицей), а также 2015=1981+34, при этом 34<45, то получаем, что искомый 2015-ый элемент равен 34+1=35.<br>

(960 баллов)