1) = Sin30° + Cos60° = 1/2 +1/2 =1
2)= 1/Cos²α -(Cos²α + Sin²α) = 1/Cos²α -1 = tg²α
3) сначала: 6Cos(2x + π/2) = 2
-6Sin2x = 2
Sin2x = -1/3
теперь пример:
= 1,5(CosxSin3x - Cos3xSinx) = 1,5·Sin2x = 1,5·(-1/3) = -0,5
4)сначала: 4Sin(3π/2 -5x) =1
-4Cos5x = 1
Cos x = -1/4
теперь пример:
=4(Sin3xSin2x - Cos2xCos3x) = -4Cos5x = -4·(-1/4) = 1
5)Sin2β Cos(π/2 +2β) -2 + Cos²2β= - Sin2βSin2β -2 + Cos²2β=
=-Sin²2β -2 + Cos²2β = Cos4β -2
6)=6Cos3xSin(3π -3x) -1 - Sin6x=6Cos3xSin3x-1 -Sin6x=
=3Sin6x -1 -Sin6x = 2Sin6x -1
7)=Cos60° -Cos30° = 1/2 - √3/2
8)=2Cos²α -1 = Cos2α