В окружности с центром О проведены диаметр АС и радиус ОВ так, что хорда ВС равна...

0 голосов
417 просмотров

В окружности с центром О проведены диаметр АС и радиус ОВ так, что хорда ВС равна радиусу. Найти ∠АОВ, если ∠ВСО = 60°.


Геометрия (38 баллов) | 417 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Угол СОВ - вписанный. Угол АОВ – центральный и опирается на ту же дугу. 

Вписанный угол равен половине центрального угла, опирающегося на ту же дугу. ⇒ угол АОВ=2•60°=120°. 

Вариант решения. 

В ∆ ВОС стороны ВО=СО - радиусы. 

ВС=R ( дано) 

∆ ВОС - равносторонний

АС - диаметр,⇒ угол АОС - развёрнутый. 

Смежный с углом ВОС угол АОВ=180°-60°=120° 


image
(228k баллов)