Пожалуйста помогите решить систему, ответ нужен и...

0 голосов
64 просмотров

Пожалуйста помогите решить систему, ответ нужен и одз.

(567-9^(-x))\(81-3^(-x))>=7

log0,25*x^2((x+12)/4)<=1</p>

Мне спать скоро, помогите! Может кто просто Область допустимых значений написать?


Алгебра (15 баллов) | 64 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решить систему:

\dispaystyle \left \{ {{ \frac{567-9^{-x}}{81-3^{-x}} \geq 7 \atop {log_{0.25x^2} \frac{x+12}{4} \leq 1}} \right.

решаем неравенства 

1)
\dispaystyle \frac{576-3^{-2x}}{81-3^{-x}} \geq 7

\dispaystyle (\frac{1}{3})^x=y

\dispaystyle \frac{567-y^2}{81-y} \geq 7\\ \frac{567-y^2-7*81+7y}{81-y} \geq 0\\ \frac{y(7-7y)}{81-y} \geq 0

\dispaystyle y \neq 0. y \neq 81; y=7

   +       -            +
-----7----------81---

\dispaystyle \frac{1}{3}^{x} \leq 7\\x \geq log_{1/3}7

\dispaystyle \frac{1}{3}^x\ \textgreater \ 81\\x\ \textless \ -4

2)

\dispaystyle log_{0.25x^2} \frac{x+12}{4} \leq 1

1. 0.25x²>1; x∈(-oo;-2)∪(2;+oo)

\dispaystyle \frac{x+12}{4} \leq 0.25x^2\\x+12-x^2 \leq 0\\x^2-x-12 \geq 0
x∈(-oo;-3]∪[4;+oo)

2) 0<0.25x²<1; x∈(-2;2)<br>
\dispaystyle \frac{x+12}{4} \geq 0.25x^2\\x+12-x^2 \geq 0\\x^2-x-12 \leq 0
x∈[-3;4] и с учетом условия x∈(-2;2)

объединяем все промежутки

---- (- 4) -------( - 3) ------( - 2) -------( - log₃7)-------(2 )----- (4 )----
/////                                                         ////////////////////////////////////////
\\\\\\\\\\\\\\\\\\\\\\\\\\\             \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\            \\\\\\\\\\\\\\\\

ответ : (-oo;-4)∪(-log₃7;2)∪(4;+oo)


(72.1k баллов)