Дано:
h1=h2
t1=4 c
uo(2)=2 м/с
Решение
h1=uot+gt^2/2
uo=0
h1=gt^2/2=10*16/2=80 м.
Высота с которой падают оба тела=80 метров , за сколько второе тело пройдет этот путь с начальной скоростью=2 м/с?
h2=uo(2)t+gt^2/2
Получаем обычное квадратное уравнение с неизвестным t.
80=2t+10t^2/2 |*2
160=4t+10t^2
10t^2+4t-160=0 |:2
5t^2+2t-80=0
t1,2=-2+-sqrt4-4*5*(-80)/10
t1=-2+sqrt1604/10
t2=-2-sqrt1604/10
t2<0|=> не подходит.
t1=4 c
t2=-2+sqrt1604/10=3,8...сек
Вот теперь можешь легко узнать на сколько быстрее упадёт второе тело
оно упадёт на 4-3,8=0,2 секунды
sqrt-квадратный корень.