Найдите угол между двумя смежными гранями правильного октаэдра.

0 голосов
78 просмотров

Найдите угол между двумя смежными гранями правильного октаэдра.


Геометрия (20 баллов) | 78 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Примем длину ребра за 1.
Апофема грани равна 1*cos(60/2) = √3 / 2.
Проведём сечение октаэдра через вершину перпендикулярно ребру.
Получим фигуру из двух треугольников.
Рассмотрим один из них.
Это равнобедренный треугольник,  основание равно ребру октаэдра, 2 стороны - это апофемы боковых граней.
Угол при основании - это половина двугранного угла октаэдра.
Его находим по теореме косинусов:
\frac{ \beta }{2}=arc cos( \frac{a^2+b^2-c^2}{2ab} ) = arccos( \frac{ (\frac{\sqrt{3}}{2})^2+1^2- (\frac{\sqrt{3}}{2})^2}{2* \frac{ \sqrt{3} }{2}*1 } =arc cos\frac{1}{ \sqrt{3} } =54,73561°.
Ответ: угол между двумя смежными гранями правильного октаэдра равен 2*54,73561 = 109.4712°.

(309k баллов)