Допустим есть набор точек (хi;yi)
допустим мы знаем что этот набор точек связан функциональной зависимостью y=y(x) но некоторые параметры нам точно неизвестны
например нам известно что эта зависимость прямолинейная и имеет вид
у=А*х+B
нам нужно найти значения А и В чтобы набор точек (хi;yi) как можно ближе ложился рядом с прямой у=А*х+B
метод наименьших квадратов состоит в том чтобы подобрать такие значения параметров А и В при которых отклонения yi от у были минимальны
для вычислений берется сумма квадратов таких отклонений
summ ((yi-y(xi))^2) =summ ((yi-(А*хi+B))^2)
поэтому метод называется метод наименьших квадратов
продолжу
видно, что summ ((yi-(А*хi+B))^2) - какое-то положительное число, зависящее от А и В
А и В ищут как точки минимума функции S(А;В) = summ ((yi-(А*хi+B))^2)
для этого выписывают производную суммы квадратов по А и приравнивают ее нулю
такжев ыписывают производную суммы квадратов по В и приравнивают ее нулю
из двух получившихся уравнений выражают А и В
******************************
1) по методу наименьших квадратов можно искать не только линейную зависимость.
2) если известно что зависимость - нечетная, то ее ищут в виде у=А*х
3) можно искать зависимость в любом виде, даже в виде у=А )))