Доказать методом математической индукции справедливость следующих равенств:...

0 голосов
86 просмотров

Доказать методом математической индукции справедливость следующих равенств: 1/1*5+1/5*9+...+1/(4n-3)(4n+1)=n/4n+1


Математика (57.1k баллов) | 86 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Шаг 1 (базис индукции).

Пусть n=1. Тогда левая часть доказываемого равенства 1/(1*5)=1/5, правая часть 1/(4*1+1)=1/5, т.е. равенство справедливо.

Пусть 1/(1*5)+1/(5*9)+...+1/((4k-3)(4k+1))=k/(4k+1) при n=k.

Шаг 2 (индуктивный переход).

Пусть n=k+1. Тогда 1/(1*5)+1/(5*9)+...+1/((4k-3)(4k+1))+1/((4(k+1)-3)(4(k+1)+1))=

 

=k/(4k+1)+1/((4(k+1)-3)(4(k+1)+1))=k/(4k+1)+1/((4k+4-3)(4k+4+1))=

 

=k/(4k+1)+1/((4k+1)(4k+5))=(k(4k+5)+1)/((4k+1)(4k+5))=(4k^2+5k+1)/((4k+1)(4k+5))=

 

=(4k^2+k+4k+1)/((4k+1)(4k+5))=(k(4k+1)+4k+1)/((4k+1)(4k+5))=

 

=((4k+1)(k+1))/((4k+1)(4k+4+1))=(k+1)/(4(k+1)+1)

 

Следовательно, исходное предположение справедливо при любых натуральных n.

(84.6k баллов)