Знайти проміжки зростання і спадання функції. y=(1/4)x^4-(1/3)x^3-3x^2+2

0 голосов
38 просмотров

Знайти проміжки зростання і спадання функції.
y=(1/4)x^4-(1/3)x^3-3x^2+2


Алгебра (55 баллов) | 38 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Знайти проміжки зростання і спадання функції.
y = (1/4)*(x^4)-(1/3)*(x^3)-3*(x^2)+2
Решение
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = x³ - x² - 6x
или
f'(x) = x(x² - x - 6)
Находим нули функции. Для этого приравниваем производную к нулю
x(x² - x - 6) = 0
Откуда:
x₁ = - 2
x₂ = 0
x₃ = 3
(-∞ ;-2)  f'(x) < 0  функция убывает
(-2; 0)   f'(x) < 0 функция возрастает
(0; 3)   f'(x) > 0   функция убывает
(3; +∞)  
f'(x) < 0  f'(x) > 0   функция возрастает

В окрестности точки x = -2 производная функции меняет знак с (-) на (+). Следовательно, точка x = -2 - точка минимума. В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума. В окрестности точки x = 3 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3 - точка минимума.


(61.9k баллов)