0 \\ \Delta=AC-B^2=2*2-0^2=4>0 \\ z(M)=0^2+(1-1)^2=0" alt="z=x^2+(y-1)^2=x^2+y^2-2y+1 \\ z'_x=(x^2+y^2-2y+1)'_x=2x \\ z'_y=(x^2+y^2-2y+1)'_y=2y-2 \\ \\ z'_x=0\ \ \ \ \ \ z'_y=0 \\ \left \{ {{2x=0} \atop {2y-2=0}} \right \\ \left \{ {{x=0} \atop {y=1}} \right \\ M(0;1) \\ \\ z''_{xx}=(2x)'_x=2 \\ z''_{xy}=(2x)'_y=0 \\ z''_{yy}=(2y-2)'_y=2 \\ \\ z''_{xx}(M)=2 \\ z''_{xy}(M)=0 \\ z''_{yy}(M)=2 \\ \\ A=2;\ \ B=0;\ \ C=2 \\ A>0 \\ \Delta=AC-B^2=2*2-0^2=4>0 \\ z(M)=0^2+(1-1)^2=0" align="absmiddle" class="latex-formula">
В точке M локальный минимум