Пусть PABCD пирамида , P - вершина пирамиды ,основание ABCD -прямоугольник , (APB ) ⊥ (ABCD) , ( CPB ) ⊥(ABCD) , PB =h ,∠PAB =α ,
∠PCB =β.
-------
S = Sбок - ?
S =S бок =S(PAB) +S(PCB) +S(PAD) +S(PCD) .
PB ⊥(ABCD) , AD ⊥ AB ⇒AD ⊥ PA (теорема трех перпендикуляров)
аналогично CD ⊥ BC ⇒ CD ⊥ PC .
S =(1/2)AB*PB + (1/2)BC*PB +(1/2)AD*PA + (1/2)CD*PC =
= (1/2)hctqα*h +(1/2)*hctqβ*h +(1/2)hctqβ*h/sinα + (1/2)hctqα*h/sinβ =
= (1/2)h²(ctqα+ctqβ) +(1/2)h²(ctqβ/sinα + ctqα/sinβ)
=h²/2sinαsinβ) *(sin(α+β)+cosα+cosβ) .
...преобразование можно продолжать :
h²(cos(α+β)/2) / sinαsinβ * (sin(α+β)/2 +cos(α-β)/2) ....