У Пети много одинаковых кубиков.Он тренировал своё умение правильно оценивать количество...

0 голосов
36 просмотров

У Пети много одинаковых кубиков.Он тренировал своё умение правильно оценивать количество кубиков, имеющих в совокупности такую же массу, как его учебник математики.При первой попытке он заявил, что 24 кубика уравновешивают эту книгу. Оказалось, что масса учебника на 180 г меньше массы 24 кубиков. При второй попытке он сказал, что 18 кубиков вместе имеют такую же массу, как рассматриваемая книга. Оказалось, что масса учебника на 60 г меньше массы 18 кубиков.
1) Сколько кубиков уравновешивают данную книгу?
2) Какова масса книги?


Математика (40 баллов) | 36 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть масса кубика = х (г),
тогда при первой попытке масса учебника = (24х - 180) г
при второй попытке масса учебника = (18х - 60) г
Масса учебника - величина постоянная, поэтому составим уравнение:
24х - 180 = 18х - 60
24х - 18х = -60 + 180
6х = 120
х = 20      (масса кубика)
24х - 180 = 24*20 - 180 = 300(г)  масса учебника
300 : 20 = 15(кубиков)
Ответ: 15 кубиков уравновешивают книгу.
             300г - масса книги.



(550k баллов)
0

Можно решить и без х. Решение: 1) 24 - 18 = 6(куб) больше в 1-ой попытке, чем во 2-ой. 2) 180 - 60 = 120(г) - масса 6 кубиков; 3) 120 : 6 = 20(г) - масса одного кубика; 4) 24 * 20 = 480(г) - масса 24 кубиков; 5) 480 - 180 = 300(г) - масса учебника; 6) 300 : 20 = 15(куб.) уравновешивают учебник. Ответ: тот же.