** острове живут рыцари и лжецы. Рыцари всегда говорят только правду, лжецы – всегда...

0 голосов
110 просмотров

На острове живут рыцари и лжецы. Рыцари всегда говорят только правду, лжецы – всегда лгут. По кругу сидят рыцари и лжецы – всего 12 человек. Каждый из них сделал заявление: "Все, кроме, быть может, меня и моих соседей – лжецы". Сколько рыцарей сидит за столом, если известно, что лжецы всегда врут, а рыцари всегда говорят правду?


Алгебра (86 баллов) | 110 просмотров
Дан 1 ответ
0 голосов

Все не могут быть лжецами – тогда все заявления были бы истинными. Значит, есть рыцарь. Все, кроме, быть может, его двух соседей – лжецы. Оба соседа не могут быть лжецами – тогда они сказали бы правду; оба не могут быть рыцарями – тогда бы они солгали. Единственная оставшаяся возможность – один сосед — лжец, другой – рыцарь (то есть два рыцаря рядом, остальные — лжецы) удовлетворяет условиям задачи. Ответ: 2 рыцаря. 

(1.1k баллов)
0

спс тебе Лиза