1. Трапеция ABCD, AD II BC, AB = CD; AC перпендикулярно BD. Ясно также, что AC = BD;
Если провести CE II BD, Е лежит на продолжении AD, то BCDE - параллелограмм, и треугольник ACE имеет ту же площадь, что и трапеция ABCD, поскольку AE = AD + DE = AD + BC, и площади ACE и ABCD равны (AD + BC)*h/2, где h - расстояние от С до AD.
Далее, треугольник АСЕ прямоугольный равнобедренный, поэтому его высота к АЕ равна половине АЕ = 6 + 10 = 16, то есть h = 8, и площадь равна 16*8/2 = 64.
2. В равнобедренной описанной трапеции сумма боковых сторон равна сумме оснований, что означает, что боковая сторона равна средней линии. Поскольку угол при основании 30 градусов, то высота трапеции равна половине боковой стороны.
Поэтому, если боковая сторона (она же средняя линяя) равна а, то
a*(a/2) = 312,5;
a^2 = 625;
a = 25