ΔABC:
AB{5-2;7-4}, AB{3;3}. |AB|=√(3²+3²). |AB|=3√2
BC{8-5;10-7}, BC{3;3}. |BC|=√(3²+3²). |BC|=3√2
AC{8-2;10-4}, AC{6;6}. |AC|=√(6²+6²). |AC|=6√2
PΔABC=AB+BC+AC
PΔABC=3√2+3√2+6√2
PΔ=12√2
медиана- отрезок, соединяющий вершину треугольника с серединой противолежащей стороны. М - середина стороны АВ, ⇒ МС - медиана
координаты M(х;y) середины стороны АВ
xM=(xA+xB)/2, yM=(yA+yB)/2
xM=(2+5)/2, xM=3,5
yM=(4+7)/2, yM=5,5
MC{8-3,5;10-5,5}. MC{4,5;5,5}
|MC|=√(4,5²+5,5²). |MC|=4,5√2