Z₁ = r₁(cosβ₁ + i sinβ₁) ; z₂ = r₂(cosβ₂ + isinβ₂) .
z₁ -z₂ =r₁cosβ₁ - r₂cosβ₂ +i (r₁sinβ₁ - r₂sinβ₂) .
|z₁| = r₁ ; |z₂| = r₂ .
|z₁ -z₂|² =(r₁cosβ₁ - r₂cosβ₂)² +(r₁sinβ₁ - r₂sinβ₂)² =
r₁²(cos²β₁ +sin²β₁) +r₂²(cos²β₂ +sin²β₂) - 2r₁r₂(cosβ₁* cosβ₂ +sinβ₁sinβ₂) =
r₁² +r₂² - 2r₁r₂cos(β₁-β₂) = (r₁ +r₂)² - 2r₁r₂(1+ cos(β₂-β₁)) .
|z₁ -z₂| ≤ r₁ +r₂ . * * * 2r₁r₂(1+ cos(β₂-β₁) ≥ 0 * * *
|z₁ -z₂| = r₁ +r₂ , если 1+ cos(β₂-β₁) =0⇔ cos(β₂-β₁) = -1 ;β₂-β₁ = π.