Поскольку переменная находится в знаменателе функции, производим проверку по ОДЗ.
Квадратный трёхчлен в знаменателе приравниваем нулю:
Решаем уравнение x^2-x+1=0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-1)^2-4*1*1=1-4=-3;
Дискриминант меньше 0, уравнение не имеет корней.
Значит функция не имеет ограничений и является непрерывной.
Экстремумы функции.
Для того, чтобы найти экстремумы,нужно решить уравнение:
d/dx (x^3)/(x^2-x+1) = 0 (производная равна нулю).
Находим производную:
=0 и корни этого уравнения будут экстремумами данной функции:
Решаем это уравнение.
Один корень очевиден: х² = 0, x₁ = 0.
Проверяем на 0 второй множитель числителя:
Решаем уравнение x^2-2*x+3=0:
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*3=4-4*3=4-12=-8;
Дискриминант меньше 0, уравнение не имеет корней.
Значит, экстремум в точке:(0, 0).
Но в этой точке функция равна нулю, поэтому найденная точка (0; 0) не является ни минимумом, ни максимумом.
Производная на всей числовой оси положительна, поэтому функция только возрастающая.
Значит,в заданном промежутке минимум будет в точке х = -1:
у = -1 / (1+1+1) = -1 / 3.
Максимум - в точке х = 1,
у = 1 / (1 - 1 + 1) = 1 / 1 = 1.