вычислите Sin(32п-t), если Sin(2п-t)=5/13.

0 голосов
75 просмотров

вычислите Sin(32п-t), если Sin(2п-t)=5/13.


Алгебра (27 баллов) | 75 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

учитывая периодичность синуса (наименьший положительный период 2*pi, период синуса 2*pi*k , где k-некоторое целое число)

sin(2*pi*k+t)=sin t

 

Sin(32п-t)=sin(30*pi+2*pi-t)=sin(2*pi*15+2*pi-t)=Sin(2п-t)=5/13.

ответ: 5/13.

(409k баллов)