Limx-> 0 x3+2x2+5\x2+x-1=
(x³+2x²+5)/(x²+x-1) = (x+1) + 6/(x²+x-1) ⇒ lim(x→0) [(x+1) +6/(x²+x-1)] = lim(x→0) (x+1) + lim(x→0) 6/(x²+x-1) = = 1 + (-6) = - 5