Помогите с алгеброй - 50 баллов

0 голосов
47 просмотров

Помогите с алгеброй - 50 баллов


image

Алгебра (5.0k баллов) | 47 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
1)\ \ |x-1| \geq -2

Выражение |x-1| всегда будет не меньше нуля, поэтому

x \in (-\infty;\ +\infty)

2)\ \ tg(x+\frac \pi 4)=\sqrt3 \\ \\ x+\frac \pi 4=arctg\sqrt3+ \pi n \\ \\
x+\frac \pi 4=\frac \pi 3+ \pi n \\ \\ x=\frac \pi 3 - \frac \pi 4 + \pi n \\ \\ x=\frac{\pi}{12} + \pi n

3)\ \ y=x^2-3x\ \ \ \ \ \ \ \ \ \ x_0=-1 \\ \\ y'=(x^2-3x)'=2x-3 \\ \\
k=y'_0=y'(x_0)=y'(-1)=2*(-1)-3=-5

4)\ \ S=\frac12ab\sin \alpha =\frac12*4*2\sqrt3*\sin60^0=\frac12*4*2\sqrt3*\frac{\sqrt3}{2}=2*3=6
(16.1k баллов)
0

Спасибо вам огромное