Обозначим треугольник как АВС, а середину гипотенузы ВС как К. Проведем прямую КМ (из середины гипотенузы к меньшему катету АС), перпендикулярную АС. КМ⊥АС(т.к. расстояние всегда измеряется длинной перпендикуляра).
ВК=КС(по усл.)
Рассмотрим ВА и КМ: ВА⊥АС и КМ⊥АС⇒ВА||АС(по теореме, или же по признаку параллельности прямых о соответственных углах(∠А=∠КМС)
⇒КМ не может пересекать ВА ⇒ АМ=МС
Рассмотрим ΔАСВ и ΔКМС. ΔАВС подобен ΔКМС(по 2м углам, так как ∠АВК=∠МКС(как соответственные углы при парал. прям) и ∠С-общий). Составим пропорцию(большая сторона к меньшей):
КС=13÷2=6.5
МС=5÷2=2.5(по опр. средней линии)
КМ = 12 · 2.5 ÷ 5 = 6
Ответ: 6.
Если будут неясности, напишите в комментарии, я учту.