Если принять за единицу измерения радиус круга и обозначить x длину стороны искомого квадрата, то задача сводится к решению уравнения: x^2=п, x=Vп
Как известно, с помощью циркуля и линейки можно выполнить все 4 арифметических действия и извлечение квадратного корня; отсюда следует, что квадратура круга возможна в том и только в том случае, если с помощью конечного числа таких действий можно построить отрезок длины . Таким образом, неразрешимость этой задачи следует из неалгебраичности (трансцендентности) числа п, которая была доказана в 1882 году Линдеманом.
Однако эту неразрешимость следует понимать, как неразрешимость при использовании только циркуля и линейки