1)cos(π/6 - 5x/8) = -1
sin(5x/8+π/3)=-1
5x/8+π/3=-π/2+2πn,n∈z
5x/8=-5π/6+2πn,n∈z
x=-4π/3+16πn/5,n∈z
2)sin(π/3+x)=√2/2
x+π/3=(-1)^n*π/4+πn,n∈z
x=-π/3+(-1)^n*π/4+πn,n∈z
3)4sin²(x-π/6)+3sin(x-π/6)-1=0
sin(x-π/6)=a
4a²+3a-1=0
D=9+16=25
a1=(-3-5)/8=-1⇒sin(x-π/6)=-1⇔x-π/6=-π/2+2πn,n∈z⇒x=-π/3+2πn,n∈z
a2=(-3+5)/8=1/4⇒sin(x-π/6)=1/4⇒x-π/6=(-1)^k*arcsin1/4+πk⇒
x=π/6+(-1)^k*arcsin1/4+πnk,k∈z