Решение
7) y = 2*x-7*ln(x-8)+5
Находим
первую производную функции:
y` = 2 -
7/(x - 8)
Приравниваем
ее к нулю:
2 -
7/(x - 8) = 0
x₁ = 23/2
Вычисляем значения функции
f(23/2)
= - 7*ln 7 + 7*ln 2 + 28
Используем
достаточное условие экстремума функции одной переменной. Найдем вторую
производную:
y`` =
7/(x - 8)²
Вычисляем:
y``(23/2)
= 4/7 > 0
значит
эта точка - минимума функции.
8) y = ln(x+5)-5*x+5
Находим
первую производную функции:
y` = - 5
+ 1/(x + 5)
Приравниваем
ее к нулю:
- 5 +
1/(x + 5)
x₁ = - 24/5
Вычисляем значения функции
f(-
24/5) = - ln 5 + 29
Используем
достаточное условие экстремума функции одной переменной. Найдем вторую
производную:
y`` = -
1/(x + 5)²
Вычисляем:
y``(-24/5)
= - 25 < 0
значит
эта точка - максимума функции.