{3^x*3^y=81⇔{3^(x+y)=81 ⇔{3^(x+y)=3⁴ ⇔{x+y=4 ⇔{x=4-y
3^x+3^y=30 3^x+3^y=30 3^x+3^y=30 3^x+3^y=30 3^(4-y)+3^y=30
3^(4-y)+3^y=30
3⁴/3^y+3^y=30 |*3^y
3⁴+(3^y)²=30*3^y
(3^y)²-30*3^y+81=0 показательное квадратное уравнение, замена переменных:
3^y=t, t>0
t²-30t+81=0
D=(-30)²-4*1*81=576
t₁=(30+24)/2, t₁=27
t₂=(30-24)/2, t₂=3
обратная замена: t₁=27. 3^y=27, 3^y=3³, y₁=3
t₂=3, 3^y=3, 3^y=3¹, y₂=1
{x₁=1 {x₂=3
y₁=3 y₂=1