1/3 14/5 8/3 25/7 найти предел N член цепи в виде формулы

0 голосов
48 просмотров

1/3 14/5 8/3 25/7 найти предел N член цепи в виде формулы


Алгебра (94 баллов) | 48 просмотров
Дан 1 ответ
0 голосов

Геометрическая прогрессия
Последовательность чисел {an} называется геометрической прогрессией, если отношение последующего члена к предыдущему равно одному и тому же постоянному числу q, называемому знаменателем геометрической прогрессии. Таким образом, для всех членов геометрической прогрессии. Предполагается, что q ≠ 0 и q ≠ 1.

Любой член геометрической прогрессии можно вычислить по формуле:

Сумма первых n членов геометрической прогрессии определяется выражением

Говорят, что бесконечная геометрическая прогрессия сходится, если предел существует и конечен.
В противном случае прогрессия расходится.

Пусть представляет собой бесконечный ряд геометрической прогрессии. Данный ряд сходится к, если знаменатель |q| < 1, и расходится, если знаменатель |q| > 1.

Пример 1
Найти сумму первых 8 членов геометрической прогрессии 3, 6, 12, ..

Решение.
Здесь a1 = 3 и q = 2. Для n = 8 получаем

Пример 2
Найти сумму ряда .

Решение.
Данный ряд является бесконечной геометрической прогрессией со знаменателем q = − 0,37. Следовательно, прогрессия сходится и ее сумма равна

Пример 3
Найти сумму ряда

Решение.
Здесь мы имеем дело с конечной геометрической прогрессией, знаменатель которой равен . Поскольку сумма геометрической прогрессии выражается формулой

то получаем следующий результат:

Пример 4
Выразить бесконечную периодическую дробь 0,131313... рациональным числом.

Решение.
Запишем периодическую дробь в следующем виде:

Используя формулу суммы бесконечно убывающей геометрической прогрессии со знаменателем, получаем

Пример 5
Показать, что

при условии x > 1.

Решение.
Очевидно, что если x > 1, то . Тогда левая часть в заданном выражении представляет собой сумму бесконечно убывающей геометрической прогрессии. Используя формулу, левую часть можно записать в виде

что доказывает исходное соотношение.

Пример 6
Решить уравнение

Решение.
Запишем левую часть уравнения в виде суммы бесконечно убывающей геометрической прогрессии:

Тогда уравнение принимает вид

Находим корни квадратного уравнения:

Поскольку |x| < 1, то решением будет .

Пример 7
Известно, что второй член бесконечно убывающей геометрической прогрессии (|q| < 1) равен 21, а сумма равна 112. Найти первый член и знаменатель прогрессии.

Решение.
Используем формулу бесконечно убывающей геометрической прогрессии

(100 баллов)