16cosx -11sinx -4=0 ;
16*(1-tq²(x/2))/(1+tq²(x/2)) - 11*2tq(x/2)/(1+tq²(x/2)) - 4 =0 ;
16 -16tq²(x/2) -22tq(x/2) -4(1+tq²(x/2)) ;
* * * замена переменной t =tq(x/2) * * *
16 -16t² -22t -4 -4t² =0 ;
20t² +22t -12=0 ;
10t² +11t -6=0 ;
D =11² -4*10*(-6) =121+240 =361=19²;
t₁ =(-11-19)/2*10= -3/2 ⇒ tq(x₁/2) = (-3/2) ⇒x₁ = - 2arctq(3/2) +2πn , n∈Z.
t₂ =(-11+19)/2*10= 2/5⇒ tq(x₂/2) = (2/5) ⇒x₂ = 2arctq(2/5) +2πn , n∈Z.
=== по другому ====
16cosx -11sinx -4=0 ;
11sinx -16cosx = -4 ;
Методом вспомогательного аргумента)
√(11² +16²)(11/√377*sinx -16/√377*cosx) =4 ;
√377*cosα*sinx -sinα*cosx) =4 ;
sin(x-α) =4/√377 ; || α =arctq(-16/11)= -arctq(16/11) ||
x-α =( (-1) ^n)* arcsin(4/√377) +πn , n∈Z .
x = -arctq(16/11) +( (-1) ^n)* arcsin(4/√377) +πn , n∈Z