Дано:
;
Исследовать функцию и построить график.
Решение:
1) Функция определена при любых аргументах.
D(f) ≡ R ≡ ;
2) Функция не является ни чётной, ни нечётной. Докажем это:
;
≠ ± 1 при любых аргументах ;
≠ ± 1 ;
Найдём первую производную функции y(x) :
;
;
При x = 0, производная y'(x) – не определена, хотя сама функция определена при любых аргументах, так что функция непрерывна на всей числовой прямой, но непрерывно-дифференцируема за исключением ноля.
Убедимся в этом, вычислив предел около ноля слева и справа
;
;
3) Функция определена при любых x, поэтому точек разрыва нет.
Если приравнять функцию к нолю, получим:
;
;
Что возможно только при , т.е. при x = 0 ;
Итак, точка ( 0 ; 0 ) – принадлежит нашему графику.
4. Найдем асимптоты y(x).
Точек разрыва нет, значит, нет и вертикальных асимптот.
Посмотрим, что происходит с функцией y(x) при устремлении аргумента к ± :
\lim_{x \to -\infty} e^{ \frac{-x}{3} } = +\infty " alt=" = \lim_{x \to -\infty} e^{ \frac{-x}{3} ( 1 + \frac{ 2 \ln{ (-x) } }{ -x } ) } > \lim_{x \to -\infty} e^{ \frac{-x}{3} } = +\infty " align="absmiddle" class="latex-formula"> ;
;
;
Поскольку, , то:
;
Значит, уходя на отрицательную бесконечность аргумента y(x) и сама стремиться к бесконечности, а уходя на положительную бесконечно по аргументу y(x) стремится к нулю ;
Из этого следует, что при x>0 есть горизонтальная асимптота y = 0 .
Чтобы найти наклонную асимптоту, найдем предел первой производной на отрицательной бесконечности по аргументу:
<img src="https://tex.z-dn.net/?f=+%5Clim_%7Bx+%5Cto+-%5Cinfty%7D+y%27%28x%29+%3D+%5Clim_%7Bx+%5Cto+-%5Cinfty%7D+%5Cfrac%7B+e%5E%7