Решить уравнение. 6sinx-2cos2x-4cos^2-3=0

0 голосов
166 просмотров

Решить уравнение. 6sinx-2cos2x-4cos^2-3=0


Алгебра (25 баллов) | 166 просмотров
Дан 1 ответ
0 голосов
6sinx-2cos2x-4cos2x-3=0
6sinx-2(1-2sin2x)-4(1-sin2x)-3=0
6sinx -2+4sin2x-4+4sin2x-3=0
8sin2x +6sinx -9=0
sinx=a8a2+6a-9=0
D=36+288=324=182
a1=(-6+18)/16=12/16=3/4
a2=(-6-18)/16=-24/16=-3/2 - не уд. усл. |a|≤1
(91 баллов)