Пусть а - это длина меньшего осн, b - длина большего основания трапеции. с - длина боковых сторон. h - высота. S=(1/2)*(a+b)*h.
так как окружность вписана в трапецию, то h=2r=4 и a+b=2c.
(В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны. Отсюда следует, что если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон.)
S=(1/2)*(2c)*h=c*h по правилу прямоугольного треугольника с(гипотинуза)=h(высота)/sin30=h/(1/2)=2h
S=ch=2*h*h=2*4*4=32.