Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у.
Производная этой функции равна нулю пр х = 0.
Подставив это значение в уравнение функции, получаем у = 1.
Исследуем поведение производной вблизи точки х = 0.
х 0.5 0
-0.5
у' -0.6875
0 0.6875.
Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1.
Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809.
Ответ при (х=+-3) : умакс = 1,
умин = -809.