** изготовление 112 деталей первый токарь затрачивает ** 2 часа меньше, чем второй токарь...

0 голосов
35 просмотров

На изготовление 112 деталей первый токарь затрачивает на 2 часа меньше, чем второй токарь на изготовление 150 таких же деталей. Известно, что первый токарь за час делает на 3 детали больше, чем второй. Сколько деталей в час делает второй токарь?


Алгебра (22 баллов) | 35 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

1 токарь делает x дет/ч, по 1/x часа на 1 деталь.
2 токарь делает (x-3) дет/ч, по 1/(x-3) часа на 1 деталь.
112/x + 2 = 150/(x-3) 
Умножаем все на x(x-3)
112(x-3) + 2x(x-3) = 150x
112x - 336 + 2x^2 - 6x - 150x = 0
2x^2 - 44x - 336 = 0
x^2 - 22x - 168 = 0
(x + 6)(x - 28) = 0
x1 = -6 < 0 - не подходит
x2 = 28 деталей делает 1 токарь за 1 час
x - 3 = 28 - 3 = 25  деталей делает 2 токарь за 1 час

(320k баллов)
0 голосов

Пусть второй рабочий в час делает х деталей, тогда первый рабочий в час делает х+3 детали
Первый рабочий затрачивает на производство 112 деталей: 112/(х+3) часов,
тогда второй рабочий на производство 150 деталей затрачивает 150/х часов
Составим уравнение:
150/х-112/(х+3)=2
150/х-112/(х+3)-2=0
Общий знаменатель х(х+3), тогда
(150(х+3)-112х-2*х(х+3))/x(x+3)=0    ОДЗ х не равно 0 ; -3

Раскроим скобки и решим уравнение:
150х+450 -112х-2х²-6х=0 
32х-
2х²+450=0 (умножим на -1)
2х²-32х-450=0 (сократим на 2)
х²-16х-225=0
Найдем дискриминант:
D=b²-4ac=(-16)²-4*1*(-225)=256+900=1156
х1=(-b+√
D)/2*a=(-(-16)+√1156)/2*1=(16+34)/2=25
х2=(-b-√D)/2*a=(-(-16)-√1156)/2*1=(16-34)/2= - 9 < 0 - не подходит
Ответ: Второй рабочий в час изготовляет 25 деталей.




(38.5k баллов)
0

У вас ответ без решения

0

нормальное решение, не придирайтесь

0

Теперь нормальное, да, а сначала был голый ответ