Обозначим точку касания окружности нижнего основания заданной трапеции АВСД буквой К, а верхнего основания буквой М
Высота трапеции (она прямоугольная) равна 2r = 2*3 = 6 см.
Часть нижнего основания КД = 12 - 3 = 9 см.
Угол α = МОС равен углу ОДК как взаимно перпендикулярные.
tg α = 3/9 = 1/3.
МС = r*tg α = 3*(1/3) = 1 см.
Отсюда верхнее основание равно 3 + 1 = 4 см.
Тогда площадь трапеции S =6*((4+12)/2) = 6*8 = 48 cм². вот решение с тангенсом и ответ другой....