Пусть х - одна сторона прямоугольника, тогда другая сторона будет равна х-14. Диагональ прямоугольника делит его на два равных прямоугольных треугольника, тогда диагональ будет их общей гипотенузой, а стороны прямоугольника - их катетами. По т. Пифагора 26²=х²+(х-14)² ⇔
⇔ х²+х²-28х+196=26² ⇔ 2х²-28х-480=0 ⇔ x²-14x-240=0, D=196-4*1*(-240)=1156, x1=14+34/2=48/2=24, x2=14-34/2=-10 (второй корень уравнения не удовлетворяет условию задачи; сторона прямоугольника не может быть равна отрицательному числу; поэтому число -10 мы исключаем из рассмотрения).
Таким образом, стороны прямоугольника равны: 24 см и (24-14)=10см.