Обозначим первого рабочего как x, а второго - как y. Все задание - как
,
а оставшуюся часть задания на первого рабочего - как
,
составим систему уравнений и найдем y:
![\left \{ {{5(x+y)=\frac{11}{18}} \atop {7x=\frac{7}{18}}} \right. \left \{ {{5\cdot \frac{1}{18}+5y=\frac{11}{18}} \atop {x=\frac{1}{18}}} \right. \left \{ {{5y=\frac{11}{18}-\frac{5}{18}} \atop {x=\frac{1}{18}}} \right. \left \{ {{y=\frac{6}{18}:5} \atop {x=\frac{1}{18}}} \right. \left \{ {{y=\frac{1}{15}} \atop {x=\frac{1}{18}}} \right. \left \{ {{5(x+y)=\frac{11}{18}} \atop {7x=\frac{7}{18}}} \right. \left \{ {{5\cdot \frac{1}{18}+5y=\frac{11}{18}} \atop {x=\frac{1}{18}}} \right. \left \{ {{5y=\frac{11}{18}-\frac{5}{18}} \atop {x=\frac{1}{18}}} \right. \left \{ {{y=\frac{6}{18}:5} \atop {x=\frac{1}{18}}} \right. \left \{ {{y=\frac{1}{15}} \atop {x=\frac{1}{18}}} \right.](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7B5%28x%2By%29%3D%5Cfrac%7B11%7D%7B18%7D%7D+%5Catop+%7B7x%3D%5Cfrac%7B7%7D%7B18%7D%7D%7D+%5Cright.+%5Cleft+%5C%7B+%7B%7B5%5Ccdot+%5Cfrac%7B1%7D%7B18%7D%2B5y%3D%5Cfrac%7B11%7D%7B18%7D%7D+%5Catop+%7Bx%3D%5Cfrac%7B1%7D%7B18%7D%7D%7D+%5Cright.+%5Cleft+%5C%7B+%7B%7B5y%3D%5Cfrac%7B11%7D%7B18%7D-%5Cfrac%7B5%7D%7B18%7D%7D+%5Catop+%7Bx%3D%5Cfrac%7B1%7D%7B18%7D%7D%7D+%5Cright.+%5Cleft+%5C%7B+%7B%7By%3D%5Cfrac%7B6%7D%7B18%7D%3A5%7D+%5Catop+%7Bx%3D%5Cfrac%7B1%7D%7B18%7D%7D%7D+%5Cright.+%5Cleft+%5C%7B+%7B%7By%3D%5Cfrac%7B1%7D%7B15%7D%7D+%5Catop+%7Bx%3D%5Cfrac%7B1%7D%7B18%7D%7D%7D+%5Cright.+)
Проверка:
![\left \{ {{5(\frac{1}{18}+\frac{1}{15})=\frac{11}{18}} \atop {7\cdot \frac{1}{18}=\frac{7}{18}}} \right. \left \{ {{5(\frac{5}{90}+\frac{6}{90})=\frac{11}{18}} \atop {\frac{7}{1}\cdot \frac{1}{18}=\frac{7}{18}}} \right. \\\\ \left \{ {{5\cdot \frac{11}{90}=\frac{11}{18}} \atop {\frac{7}{1}\cdot \frac{1}{18}=\frac{7}{18}}} \right. \left \{ {{\frac{55}{90}=\frac{11}{18}} \atop {\frac{7}{18}=\frac{7}{18}}} \right. \left \{ {{5(\frac{1}{18}+\frac{1}{15})=\frac{11}{18}} \atop {7\cdot \frac{1}{18}=\frac{7}{18}}} \right. \left \{ {{5(\frac{5}{90}+\frac{6}{90})=\frac{11}{18}} \atop {\frac{7}{1}\cdot \frac{1}{18}=\frac{7}{18}}} \right. \\\\ \left \{ {{5\cdot \frac{11}{90}=\frac{11}{18}} \atop {\frac{7}{1}\cdot \frac{1}{18}=\frac{7}{18}}} \right. \left \{ {{\frac{55}{90}=\frac{11}{18}} \atop {\frac{7}{18}=\frac{7}{18}}} \right.](https://tex.z-dn.net/?f=%5Cleft+%5C%7B+%7B%7B5%28%5Cfrac%7B1%7D%7B18%7D%2B%5Cfrac%7B1%7D%7B15%7D%29%3D%5Cfrac%7B11%7D%7B18%7D%7D+%5Catop+%7B7%5Ccdot+%5Cfrac%7B1%7D%7B18%7D%3D%5Cfrac%7B7%7D%7B18%7D%7D%7D+%5Cright.+%5Cleft+%5C%7B+%7B%7B5%28%5Cfrac%7B5%7D%7B90%7D%2B%5Cfrac%7B6%7D%7B90%7D%29%3D%5Cfrac%7B11%7D%7B18%7D%7D+%5Catop+%7B%5Cfrac%7B7%7D%7B1%7D%5Ccdot+%5Cfrac%7B1%7D%7B18%7D%3D%5Cfrac%7B7%7D%7B18%7D%7D%7D+%5Cright.+%5C%5C%5C%5C+%5Cleft+%5C%7B+%7B%7B5%5Ccdot+%5Cfrac%7B11%7D%7B90%7D%3D%5Cfrac%7B11%7D%7B18%7D%7D+%5Catop+%7B%5Cfrac%7B7%7D%7B1%7D%5Ccdot+%5Cfrac%7B1%7D%7B18%7D%3D%5Cfrac%7B7%7D%7B18%7D%7D%7D+%5Cright.+%5Cleft+%5C%7B+%7B%7B%5Cfrac%7B55%7D%7B90%7D%3D%5Cfrac%7B11%7D%7B18%7D%7D+%5Catop+%7B%5Cfrac%7B7%7D%7B18%7D%3D%5Cfrac%7B7%7D%7B18%7D%7D%7D+%5Cright.)
Мы получили число (1/15), указывающее на то, сколько задания делает второй рабочий в день. А теперь узнаем, за сколько дней он сделает все задание:
1.) ![\frac{18}{18}:\frac{1}{15}=\frac{18}{18}\cdot \frac{15}{1}=\frac{18}{6}\cdot \frac{5}{1}=\frac{90}{6}=15 \frac{18}{18}:\frac{1}{15}=\frac{18}{18}\cdot \frac{15}{1}=\frac{18}{6}\cdot \frac{5}{1}=\frac{90}{6}=15](https://tex.z-dn.net/?f=%5Cfrac%7B18%7D%7B18%7D%3A%5Cfrac%7B1%7D%7B15%7D%3D%5Cfrac%7B18%7D%7B18%7D%5Ccdot+%5Cfrac%7B15%7D%7B1%7D%3D%5Cfrac%7B18%7D%7B6%7D%5Ccdot+%5Cfrac%7B5%7D%7B1%7D%3D%5Cfrac%7B90%7D%7B6%7D%3D15+)
Ответ: за 15 дней.