Рассмотрим осевое сечение. Это равнобедренный треугольник с основанием диаметр основания конуса и боковыми сторонами образующие конуса. Угол между боковыми сторонами пси, длина основания 2r, радиус вписанной окружности R. Центр этой окружности - пересечение биссектрис. Высота из вершины конуса совпадает с биссектрисой по свойству равнобедр. треугольника.
Рассмотрим прямоугольный треугольник со сторонами высота, образующая, радиус основания. В нем верхний угол (пси/2), при основании соотв. (90-пси/2).
И самый маленький треугольник с вершиной в центре круга, сторонами r, R и часть биссектрисы угла (90-пси/2). Он так же прямоугольный. Соотв. Угол в нем при центре круга (90-(90-пси/2)/2)=(45+пси/4). Этот треугольник связывает все наши данные воедино - катеты r и R, угол при катете R (45+пси/4). Остается только выразить.
r/R = tg(45+пси/4)
Ответ:
а) r = R*tg(45+пси/4)
б) R = r/tg(45+пси/4)